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Abstract

PHOENIX (Portable, High-efficiency, Optimal ENergy Imaging X-rays) is a quasi-DC,
electrostatic, vacuum-diode designed as a portable x-ray source with national defense and
commercial applications. The patent-pending PHOENIX concept combines a megavoltage,
Cockroft-Walton voltage multiplier' with a Van de-Graaff electrostatic charge-storage dome to
create a vacuum-diode suitable for x-ray production. Naturally this structure must minimize
internal electric fields to reduce electrical breakdown while simultaneously reducing size and
weight to enhance portability. In this paper we describe the optimization process and model results
obtained using the COMSOL multi-physics code. We describe three models: a prototype model
(see Figuresl1-6) built to demonstrate the PHOENIX concept as part of Laboratory Directed
Research and Development (LDRD) Mission Foundation Research (MFR) Phase-I , a “back-of-
the-envelope” design (Figures 7-11) used as a starting point for further COMSOL optimization,
and finally, the optimized geometry (Figures 12-17) implemented in the MFR Phase-Il. In all
cases compromises resulting from cost, schedule, and manufacturing constraints were taken into
account as the design progressed.

Introduction

Despite more than a century of development of electrostatic “influence machines”, high-voltage,
DC diodes remain relatively rare. Modern examples are primarily used as photo-injectors for free-
electron-lasers - for example at Thomas Jefferson Lab? and in Japan®. While our work with
electrostatic generators like MEXRAY* and work with plasma-etched electrodes® indicates that
DC electric fields as high as 30MV/m can be sustained in a vacuum on large, epoxy-coated
capacitor plates, an electric field threshold of 10 MV/m DC is more widely accepted®’ for mirror
polished metals with large gaps®.

Taking 10MV/m a design goal, our optimization was also subject to the constraint that the initial,
IMV diode must fit within a 24” diameter cylindrical vessel (aka “the pickle barrel” shown in
Figure 1) and that the follow-on, 2MV hydrotesting design must fit within a 48” cylindrical
diameter vessel. Finally, we sought to mimimize the field strength near the cathode triple-point
and near both plastic and metal connectors.

The electrostatic field-strength is related to the diode geometry, the voltages applied and the
materials within the device. These are modeled using the COMSOL multiphysics code® and
evaluated with a “fine” mesh to seek minimum electric fields given other constraints of size,
weight, and volume. In our studies, 2-D axisymmetric (coaxial) geometries were tested within the
same basic structure consisting of: a vacuum vessel, a Van de Graaff dome, and 10 field shrouds
each connected to a voltage multiplier circuit within a tapered epoxy insulator similar to the
prototype shown in Figure 3.



Figure 2 — MFR Phase | PHOENIX cutaway showing Cockroft-Walton modules (left) and Van
de Graaff “dome”, (right)



Figure 3 — PHOENIX MFR Prototype Cockroft-Walton module

PHASE | MFR Design

For completeness, we evaluated the electrostatics of the PHASE | MFR design shown if Figures
1-3. In part due to the limited time and budget allocated to that effort, this device was quite crude.
Nonetheless, it did successfully demonstrate the unique combination of a Cockroft-Walton and
Van de Graaff at 600kV — which was the goal of the MFR.

Our experimental studies also indicated significant field-emission from both the cathode shroud
and the aluminum “coronal” rings as diagnosed by a Geiger counter and special-purpose field
probes. Initially these rings were unpolished and had significant field emission. Subsequent
versions were hand-polished to a mirror-finish with much reduced field-emission. These were
conditioned to approximately 600kV (as verified by an ORTEC, high-purity germanium, gamma-
spectrometer).

Taking Figure 4 as a representative example of the electric fields present in our Phase | design and
testing, we observe that peak fields of 30MV/m are expected at the full, LMV charge voltage (see
Figures 4-5). Since we were only able to demonstrate operation at 600kV, we witnessed fields as
high as 18MV/m on polished aluminum — again, with significant field emission.

! Recognizing that there isn’t any true corona loss in our system, we adopted the term “corona” ring here because the
actual components used were, in fact, aluminum high-voltage corona rings adapted from high-voltage power
distribution systems.
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Figure 4: Cutaway view of PHOENIX PHASE I prototype. The COMSOL model shows
~30MV/m peak electric fields (left) and the corresponding equipotential lines (right).
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Figure 5: Blow-up view of PHASE | prototype shroud with electric field lines. Electric fields
peak at ~30 MV/m at the rightmost point of the shroud.
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Figure 6: Blow-up view of the PHASE I design’s cathode triple point with electric field lines.
Electric field strength of approximately 6 MV/m in this region @ 1MV operation.

Finally, our calculations indicate that the cathode-triple-point junction has fields as high as 6MV/m
(4MV/m @ 600KV operation) as shown in Figure 6.

Taking this information forward into PHASE |1, it was clear that a more sophisticated field shroud
would be required to accomplish our ultimate goals. In addition, it was desided to use either
polished stainless steel or titanium shrouds as these are more common in the literature and
generally have better performance often attributed to their higher work function and “refractory”
nature.

PHASE Il Design

Two geometries (shown in Figure 7) were used to obtain an initial estimate of field stresses in our
design. The first geometry is of two, nested, concentric spheres, and the second is of a simple,
coaxial-line with a charged interior conductor and a grounded exterior conductor.

Gauss’ law can be used to find analytic solutions for the electric fields in these simple geometries,
which represent a rough approximation to the geometry present in our situation. These analytic
geometries were chosen to gain insights into the problem space.
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Figure 7 — Concentric sphere and coaxial geometries

Let us start by recognizing that the capacitance, C, between the two concentric spheres enclosing
a vacuum dielectric is given by:

ATEGT T

C= (1)

To—Ti
We further note that if the inner sphere is has a charge, Q, on it, the voltage, V, between the two
spheres is given by:

_Q
V== )

The analytic expression for the radial electric field, E,, present in the region, ri<r<ro, is given by:

- _ _Q
T 4me,r? (3)
By substitution, we have:
= TtV
Er= (ro—r)r? @
The peak electric field occurs on the surface of the inner sphere when r=r;, or:
= 44
E, =—2— 5
T (ro—Tpri ( )

To minimize this field with respect to the inner radius, we set the partial derivative with respect r;
to zero or:

JE, _ Vre(ro—21y)

ori  ri(ro—ry)?

=0->n =" (6)



This analysis gives us basic Design rule #1: for a fixed voltage, the peak electric field between
concentric spheres is minimized for ri=ro/2. Consequently, we start our design effort for the Van
de Graaff dome with a dome radius set to half the radius of our barrel, or 6”.

The simplified analytic description for concentric “cylindrical” parts is similar, but with modified
mathematical details. In that latter case the radial electric field, E; (ri<r<ro) is given by:

= 14
E,. = (7
T
(i)
Setting the partial derivative with respect to the inner radius, ri, to zero, at r=r; (where the field is
maximum) gives:

o, _ ) monG) o (B)=0-7=e ©

2

ori Ti Ti
T T i l
Ti Ti

giving us Design rule #2: for a fixed voltage, the peak electric field between two coaxial cylinders
is minimized when ro/ri=e. Consequently, we start our design effort with the inner, field shrouds
having a radius of 4.1”.

Peak Radial Electric Field For 60cm Diam. Coaxial Line
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Figure 8 — Peak radial electric field for 60cm diameter (24”) coaxial line. Note that the
minimum field occurs when ri=ro/e =11cm.
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An example of this behavior for a 60cm (24”) diameter coaxial line, with a 1MV voltage from core
to edge is shown in Figure 8. Note that the minimum (peak) field is about 9MV//m and occurs
over a somewhat broad minium radius (+/- 2cm).

The peak electric fields calculated with COMSOL are shown in Figure 9 below and are somewhat
higher than our analytic approximations — perhaps justifying the need for more careful
optimization.

Figures 10 and 11 illustrate the fields around the module shrouds and triple-points respectively.
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Figure 9: Cutaway view of the second-generation COMSOL model showing electric field lines
(left) with a peak electric field of 16 MV/m, and equipotential lines (right).
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Figure 10: Blow-up view of PHOENIX project second-generation COMSOL model’s shroud end
hook geometry with electric field lines. Electric field peak of 16 MV/m at the rightmost point of
the shroud.
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Figure 11: Blow-up view of PHOENIX project second-generation COMSOL model’s uppermost
triple point with electric field lines. Electric field strength of approximately 3.6 MV/m in this
region.
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COMSOL Optimized Design

Using the analytic model as a starting point we hand-optimized the various components by
carefully shaping the module field shrouds and the Van de Graaff dome to reduce the electric
fields. The results of this optimization are shown in Figure 12-17.

In addition, a Pierce-like geometry was included to model the electron gun electrodes including a
small, pointed, tungsten-target tip. Somewhat surprisingly, this latter feature was not a strong
driver of the peak fields observed thereby giving us some flexibility in the detailed design that will
ultimately be fielded.
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Figure 12: COMSOL optimized model with electric field lines (left) and equipotential lines
(right). A peak electric field of 13.2 MV/m was calculated on the Van de Graaff dome.
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Figure 13: Optimized COMSOL model’s cathode-triple-point equipotential lines.
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Figure 14: Optimized COMSOL model’s welded shroud end hook geometry electric field
lines. Electric field peak of 12.3 MV/m on the lower curve of the shroud.
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Figure 15: Optimized COMSOL model’s shroud end hook geometry with electric field lines.
Electric field peak of 12.5 MV/m on the lower curve of the shroud.
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Figure 16: Optimized COMSOL model’s shroud plate’s bolt-fitting end with electric field lines.
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Figure 17: Optimized COMSOL model’s cathode-triple-point and surrounding geometry with
electric field lines. Electric field strength of approximately 2 MV/m in this region.

One area that needs special attention is the electric field inside the Van de Graaff dome. Again,
referencing the concentric spheres in Figure 7, if the inner sphere is hollow, and the charge is
uniformely distributed on that surface, by symmetry, the electric field at the center of that sphere
is zero. However, the magnitude of the electric field on the inner edge of the inner sphere is the
same as the field on the outer edge, or, from equation 3:
- Q

E,. =

- 2
ATET]

)

Consequently, if we do nothing to mitigate this field, the polish inside the sphere must be just as
good as the polish outside — something that is highly undesireable from a manufacturing
perspective. Therefore, we will need to “fill” this sphere with conductors of some type to short-
out that adverse electric field, creating, in effect, a (pseudo-)solid sphere.

Conclusions

The COMSOL electic field optimization described herein resulted in substantial reductions in the
peak electric fields present in our PHOENIX x-ray diode when operated at a theoretical 1MV on
the Van de Graaff dome. The results of these calculations are summarized in Table 1 below. While
we fell short of our 10MV/m design goal, the COMSOL optimized design is significantly better
than either our prototype or our “back-of-the-envelope” design.
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Electrode | Peak Shroud | Peak Van de Graaff | Typical
Material Electric Field | Dome Electric Field | Cathode Triple
Point Field

MFR PHASE | Polished 30 MV/m >30 MV/m 6 MV/m
Prototype Aluminum | (18MV/m) (4MV/m)
PHOENIX Initial | Polished 15 MV/m 16 MV/m 4 MV/m
Design Stainless
PHASE Il Polished 12.5 MV/m 13.2 MV/m 2 MV/m
COMSOL Design | Stainless
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Appendix A — Shroud Drawings
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